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Analysis of flow in the plate-spiral of a reaction turbine
using a streamline upwind Petrov–Galerkin method
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SUMMARY

The prediction of the flow field in a novel spiral casing has been accomplished. Hydraulic turbine
manufacturers are considering the potential of using a special type of spiral casing because of the easier
manufacturing process involved in its fabrication. These special spiral casings are known as plate-spirals.
Numerical simulation of complex three-dimensional flow through such spiral casings has been accom-
plished using a finite element method (FEM). An explicit Eulerian velocity correction scheme has been
deployed to solve the Reynolds-average Navier–Stokes equations. The simulation has been performed to
describe the flow in high Reynolds number (106) regimes. For spatial discretization, a streamline upwind
Petrov–Galerkin (SUPG) technique has been used. The velocity field and the pressure distribution inside
the spiral casing reveal meaningful results. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: finite element method; hydraulic turbine; plate-spiral; spiral casing; streamline upwind
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1. INTRODUCTION

The spiral casing of a hydraulic turbine is a passage with a 360° turn to direct water, entering
one end, to exit circumferentially along the radial inward direction. The role of the spiral
casing in a Francis or Kaplan turbine is to distribute the water, as evenly as possible, to the
stay vanes and wicket gates and then to the turbine runner. In a good spiral casing, the
pressure head of fluid is made available to the runner with minimum loss, hence the analysis
of the flow through a spiral casing is important for the efficient design of hydraulic turbines.
Very few articles are available in the literature on the computational analysis of this problem.

The assumption that the spiral casing can be modeled by using potential flow with
acceptable accuracy has been proven by Sopta et al. [1] and Mrsa [2]. Ulrich [3] has modeled
the viscous flow in a spiral casing and described the flow structure for the first time. He used
Galerkin’s finite element based technique for his analysis. However, his studies were restricted
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for low Reynolds number regimes. Thereafter, Shyy and Vu [4,9,10], Vu et al. [5], Vu and Shyy
[6–8] have conducted several important investigations for predicting the flow characteristics
and energy losses in different parts of the hydraulic turbine.

Figure 1 shows the spiral casing, the stay vanes, the runner, and the draft tube of a hydraulic
turbine. In a modified configuration, the entire set of the stay vanes and the guide vanes can
be housed in the gap between two circular disks attached to the spiral casing. Such an
arrangement is usually referred as the plate-spiral. The sectional view of the plate-spiral is
shown in Figure 2. The outer diameter of the disk is called the exterior diameter. The
terminology WGID, WGOD, SVID, and SVOD mean wicket gate inner diameter, wicket gate
outer diameter, stay 6ane inner diameter, and stay 6ane outer diameter respectively. The
hydraulic turbine manufacturers are considering the potential use of such spirals. However, the
detailed performances of such spirals are not known. Model testing of new spirals is also quite
expensive. A need has been felt to develop a computational tool for analyzing spirals of
various shapes and sizes.

The aim of this work is to predict the flow structure and pressure drop characteristics in a
plate-spiral, which can be used for Francis and/or Kaplan turbines. For the modeling of high
Reynolds number flow in the spiral casing, a simplified turbulence model has been used.

Figure 1. Spiral casing of a hydraulic turbine.
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Figure 2. Cross-sectional view of the plate-spiral.

For generating the finite element mesh in the above-mentioned geometry, initially two-
dimensional grids are generated at 34 cross-sectional planes along the flow direction. There-
after, three-dimensional grids have been formed by connecting the consecutive cross-planes at
the corresponding nodes. A transfinite interpolation technique (Sundararajan [11]) has been
used for the generation of the mesh. Figure 3 shows the three-dimensional view of the grid
mesh.

The streamline upwind Petro6–Galerkin (SUPG) technique (Brooks and Hughes [12]) has
been deployed to solve the three-dimensional Reynolds-averaged Navier–Stokes equations in
the above-mentioned geometry.

2. GOVERNING EQUATIONS AND THE SOLUTION SCHEME

The flow is considered to be viscous, incompressible, and turbulent. The geometry of interest
is three-dimensional. The computational domain is discretized into small hexahedral elements.
The velocity components and the pressure are collocated at each node of the element. The
Reynolds averaged Navier–Stokes equations for incompressible flows, with an extra term
indicating the porous medium treatment based on Darcy’s law, have been used here as
governing equations. These equations, together with the mass conservation equations, can be
written in the Cartesian tensor form as
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Figure 3. Grid for the spiral casing.

The subscripts i and j can take the values 1, 2, or 3 in three co-ordinate directions, x1, x2, and
x3 respectively. The x1, x2, and x3 are equivalent to x, y, and z in Cartesian co-ordinates and
the velocity u1, u2, and u3 are equivalent to u, 6, and w respectively. The equations have been
written in the dimensionless form, which facilitates the generalization to embody a large range
of problems. Here

Re=
W0D

n
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where D is the characteristic length, n is the kinematic viscosity, and W0 is the inlet velocity.
The non-dimensional turbulent viscosity nt,n is given by Prandtl’s mixing length model as

nt,n= l n
2Re

��(ui
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+
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n1/2

(3)

This is known as the zero-equation model. The zero-equation models obviously have several
shortcomings, which are indicated in the turbulent flow literature. Since the geometry itself is
extremely complex, at this stage the turbulent flow has been dealt with a simple model. Albeit
this simplification, all the subtle features of engineering importance are highlighted through
this simulation. In any case, in Equation (3), ln is given by ld, where d is the non-dimensional
radius of the duct at any section and l is a constant (chosen as 0.085).

The term K is the Darcy’s coefficient, whose value indicates the resistance due to the porous
medium in the distributor region (Figure 3). As such, the distributor has 18 pairs of aerofoils
that control the mass flux distribution of fluid. The fluid enters the runner after leaving the
distributor zone. Since the spiral casing and the distributor influence each other significantly,
both are to be treated simultaneously. In order to predict the flow behavior inside the spiral
casing, the distributor zone has been considered as a porous medium and the effect of the
individual aerofoil has been smeared out.

2.1. Eulerian 6elocity correction approach

This method is essentially based on the projection scheme of Chorin [13], which was originally
developed in a finite difference context and identical to the marker and cell (MAC) method of
Harlow and Welch [14]. This has been extended to the finite element method (FEM) by Donea
et al. [15]. In the present study, the algorithm has been extended to the solution of turbulent
flow in a complex geometry. The complete algorithm has been presented by Maji and Biswas
[16] elsewhere. However, some salient features of the algorithm are being presented herein for
a ready reference.

The Eulerian velocity correction method is a solution algorithm for unsteady, incompressible
Navier–Stokes equations. The solution at each time step is obtained through three steps.

STEP 1: Calculation of Provisional Velocities

The provisional velocities are calculated from the momentum equations by dropping the
pressure terms
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The above form of equations is used to calculate the provisional velocities u*, 6*, and w*.
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STEP 2: Solution of Pressure Equation

The pressure term, which was initially ignored, may be taken into account now. Thus, the
momentum equations become

(uj
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= −
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(xj

+
(uj*
(t

(5)

Expanding the above equation in the time domain, the following equation is obtained:

uj
n+1=uj*−Dt

�(p
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(6)

Differentiating Equation (6) with respect to x, y, and z for j=1, 2, and 3 respectively, then
adding the three and rearranging, one obtains
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1
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In the above derivation, ((ui/(xi)n+1 has been equated to zero.

STEP 3: Velocity Correction

The velocities are corrected at the next time step by updating the provisional velocities using
the evaluated pressure. Equation (6) is used to calculate the velocities un+1, 6n+1, and wn+1.

Here one can interpret the role of pressure in the momentum equations as a projection
operator that projects an arbitrary vector field into a divergence free vector field.

The salient features of the above-mentioned solution procedure may be summarized as

1. Start with initial conditions of (uj)0; p0; n=0.
2. Calculate the provisional velocities uj* from Equation (4) using the explicit Euler’s scheme.
3. Calculate the pressure pn+1 using Equation (7).
4. Calculate the corrected velocities uj

n+1 from Equation (6).

The above-mentioned steps are repeated till a steady state condition is reached.

2.2. Galerkin weighted residual method

Let V (geometry of interest) be a bounded region in R3 with the piecewise smooth boundary
G. Let x={xi}, i=1, 2, 3, denote the vector of spatial co-ordinates of a general point in V( and
let t denote the time value in the interval J= [0, T ]. Also consider n� as the outward normal
vector to G, and Gg and Gh as non-overlapping regions of G that satisfy the following:

Gg@Gh=G (8)

GgSGh=¥ (9)
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The superimposed bar in Equation (8) represents set closure and ¥ in Equation (9) denotes the
empty set. Now, our focus is on the finite element formulation of the problem defined by
Equations (4), (5), and (7), along with the following boundary conditions:

� Boundary and initial conditions for velocities

uj({xi}, t)=gj, Ö{xi}�Gg, Öt� [0, tn ], tn\0;

n� ·9uj=hj, Ö{xi}�Gh, Öt� [0, tn ], tn\0;

uj({xi}, 0)= (uj)0 (10)

� Boundary and initial conditions for pressure

p({xi}, t)=s, Ö{xi}�Gh, Öt� [0, tn ], tn\0;

n� ·9p=b, Ö{xi}�Gg, Öt� [0, tn ], tn\0;

p({xi}, 0)=p0 (11)

where gj, hj, s, b are given functions of x, y, z, and t. The initial condition (uj)0 and p0 are the
given functions of x, y, and z. The first step of an FEM is to write the weak formulation of
Equations (4), (5), and (7).

2.3. Weak formulation

Let S and V be the vector spaces of the admissible trial (basis/shape) and test (weighting)
functions, which may be defined as

S={F(V)�F� (H1(V))4, F=Fg on Gg*} (12)

where Gg*=Gg when velocities are specified; Gg*=Gg when pressure is specified; F={uj, p};
Fg={gj, s}; and

V={W �W�H1(V), W=0 on Gg*} (13)

where H1(V) is the space of the functions that, together with their first partial derivatives, are
square integrable in V.

Multiplying Equation (4) by W, and integrating over V yields
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where
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Application of Green’s theorem to the diffusion term of above equation and invoking W=0
on Gg and ((uj/(xi)ni=(uj/(n=hj (see Equation (10)), the above equation reduces to
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Now multiplying Equation (5) by W and integrating over V yields
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Similarly, Equation (7) reduces to
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2.4. Finite element formulation

In order to find a discrete solution of Equations (15)–(17), we assume V is discretized in Ne

hexahedral elements such that

.
Ne

e=1

Ve=V( , -
Ne

e=1

Ve=¥ (18)

where Ve denotes the interior domain of an element. Let Ge be the boundary of Ve. Finally, the
‘interior boundary’ Gint is defined as the following:

Gint= .
Ne

e=1

Ge−G (19)

Let (ui
h, ph) be a member of Sh and W h be member of Vh, where Sh and Vh are finite

dimensional sub-spaces of the trial (S) and test (V) spaces respectively, and defined as

Sh={(uh
i , ph)� (C0(V))4, ui

h=gi, and ph=s on Gg*}

Vh={W h�C0(V), W h=0 on Gg*}

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 113–144



FLOW IN A SPIRAL CHANNEL 121

Now, FEMs can be formulated by requiring the discrete solution ui
h, ph to satisfy the weak

form of Equations (15)–(17).
Thus, Equation (15) becomes
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In a similar manner, Equation (16) becomes

&
V

W h (uj
h

(t
dV=

&
V

W h ((uj
h)*
(t

dV−
&

V
W h (p

h

(xj

dV (21)

Following a similar approach, Equation (17) becomes
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Let the finite set {Ni} represent a basis for Sh, while {Wi} is the basis for Vh. The functions
Ni and Wi are associated with the node i of the finite element mesh. The discrete solution ui

h,
ph can be approximated within each element as a linear combination of the trial (basis)
functions as follows:

ui
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(ui(t))mNm={N}T{ui(t)}

ph= %
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where Np is the total number of nodes in each element and {N} represents a column matrix of
dimension 1×Np and {N}T represents the transpose of {N}. The trial functions {N} are
piecewise trilinear and can be expressed in terms of the transformed local co-ordinates (j, h, z).
With the approximation of ui

h and ph invoking the concept of mass lumping and mapping
eight-noded hexahedral elements onto a 2×2×2 cube via isoparametric transformation,
Equations (21) and (22) become

� Velocity correction equations
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� Pressure Poisson equation
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2.5. Streamline upwind Petro6–Galerkin based technique

The numerical scheme based on the standard Galerkin (Bubnov–Galerkin) FEM for convec-
tion–diffusion problems experiences poor convergence when convection dominates over
diffusion. Several upwind-biased finite element formulations have been proposed by many
researchers to deal with such situations. Many of the proposed schemes, when applied to a
multi-dimensional problem suffer from cross-wind diffusion, which is similar to those encoun-
tered in finite difference and finite volume based approaches. To overcome this cross-wind
problem, Brooks and Hughes [12] introduced the SUPG technique with the application of
modified weighting functions for all terms of the governing equations. The SUPG formulation
uses the trial functions and the test functions from different classes of functional space. In a
usual Galerkin weighted residual method, the test (weighting) functions are to be continuous
across inter-element boundaries. However, the SUPG formulation requires discontinuous test
functions of the form

W( h=W h+Uh (26)

where W h is a continuous weighting function and Uh is the discontinuous streamline upwind
contribution. Both W h and Uh are assumed to be smooth on the element interiors.

The SUPG based finite element formulation for Equation (20) is written as
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Applying Green’s theorem to the second term of above equation and invoking W( h in the above
expression, the following equation may be obtained:
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Let the diffusive flux in the normal direction and boundary be
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We also know from Equation (19) that
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With these definitions and also considering W h = 0 on Gg, Equation (28) can be written as
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where [ (s j
d)n ] represent the jump in (s j

d)n across inter-element boundaries.
The diffusion continuity condition across inter-element boundaries satisfies the following:
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Substitution of Equation (32) into Equation (31) yields
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We assume that the following conditions hold good in our formulation:

(i) The element domains are hexahedral and uj are interpolated with a trilinear isoparametric
interpolation function

(ii) Also, we know that (ui
h/(xi=0

The above two conditions imply that on the interior of each element
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In the above equation, Gh
l �Gh, l is the element number. Also @ lGh

l =Gh. An explicit Euler
scheme is used to expand the left-hand side of Equation (34). A second-order Adams–Bash-
forth scheme has been used for the convective terms. Also, the element stiffness matrix on the
left-hand side of the above equation is mass lumped. With all these concepts, Equation (34)
may be rewritten as
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After some rearrangements, the above equation may be expressed as
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It may be mentioned that k is the local node of an element.
Now Equation (36) can be rewritten as

%
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coeffk
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n
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�
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n

Dt

�
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%
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where nq are the elements which have q as common node point. Then, at each global node q,
the contribution from the neighboring elements will yield

gcoeffq=%
nq

coeffk, (gtderuj)q= −%
nq

(tderuj)k (39)

As mentioned earlier, k are the local nodes of element nq and these correspond to the global
node q. Finally, at each node q, we get

�uj*−uj
n

Dt

�
q

=
(gtderuj)q

gcoeffq

, (uj*)q= (uj
n)q+Dt

(gtderuj)q

gcoeffq

(40)

2.6. Choice of SUPG test (weighting) functions

The perturbation term of weighting function W( h is defined by

Uh=
k0

u2 ui

(W h

(xi

(41)

Hence

W( h=W h+
k0

u2 ui

(W h

(xi

where W h is same as trial functions

W h={W}={N}

Therefore,

{W( }={N}+
k0

u2

!
ui

(N
(xi

"
(42)

The weighting function for local node k can be expressed as

W( k=Nk+
k0

u2

!
ui

(Nk

(xi

"
(43)

where u2=uiui.
Assuming the advective movement on the element scale is locally one-dimensional, the

parameters k0 , u, and ui are to be evaluated at the element center (j=h=z=0) as follows:

k0 =auh


15
(44)
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where

a=coth(Pe)−
1

Pe

where Pe is the cell Peclet number

Pe=
uh
2k0

h=2(�h1�+ �h2�+ �h3�) (45)

where h1, h2, and h3 are the projections of e� j, e� h, and e� z vectors in the direction of the local
flow velocity u. The vectors e� j, e� h, and e� z are in the j-, h-, and z-directions respectively. The
projections h1, h2, h3 may be expressed as

h1=
1

u (ui(xi)j), h2=
1

u (ui(xi)h), h3=
1

u (ui(xi)z) (46)

Finally the Cartesian derivatives are evaluated in terms of the normalized j, h, and z co-ordinates.
The elemental integrals are expressed in terms of the determinant of the Jacobian matrix, dj,
dh, and dz. Two-point Gauss–Legendre quadrature is used to perform the numerical integration.

3. RESULTS AND DISCUSSION

3.1. The flow field in a plate-spiral

The present simulation has been performed for a Reynolds number of 106 using the same value
of Darcy’s coefficient, K, as reported by Shyy and Vu [10]. The variation of K along the distributor
height and in the circumferential direction has been considered in the present computation. Table
I represents the Darcy’s coefficient used in the computation. Figure 3 has to be consulted to
identify the elements in Table I.

Figure 4 shows the predicted velocity vectors on the horizontal mid-plane of the casing. It
can be seen that the uniform velocity at the entrance gradually culminates into a forced vortex
within the casing. This is in contrast with the free vortex flow as observed in the case of
conventional spiral casing (see Maji and Biswas [16]).

Figure 5 shows the static pressure variation on the same horizontal mid-plane of the casing.
The static pressure varies primarily along the radial direction. However, near the stay vane inlet
and in the distributor region, the static pressure is almost equal to the local ambient pressure.
The centrifugal force r6u

2/r is balanced by the radial pressure gradient (p/(r. A high-pressure
gradient exists near the outer periphery of the spiral due to large value of peripheral velocity.
The effect of radial pressure gradient can be clearly seen from the strong secondary velocity
vectors shown in the next figure. An imbalance between the centrifugal force and radial pressure
gradient causes the development of secondary flow.
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Table I. Darcy’s coefficient used in the computation.

Non-dimensionalized KElement location

Element betweenu (°) Elements located between Elements located between
J=4 and 6J=1 and 4, J=6 and 9the planes

13 and 14 0.375 0.375358
14 and 15 0.5065.5 0.506

23.5 15 and 16 0.560 0.560
16 and 17 0.48041.5 0.480
17 and 18 0.370 0.46059.5
18 and 19 0.34077.5 0.460

95.5 19 and 20 0.340 0.440
20 and 21 0.340113.5 0.420

131.5 21 and 22 0.340 0.400
149.5 22 and 23 0.340 0.380

23 and 24 0.330167.5 0.370
24 and 25 0.320 0.360185.5
25 and 26 0.310203.5 0.360

221.5 26 and 27 0.300 0.350
27 and 28 0.300239.5 0.350

257.5 28 and 29 0.300 0.380
29 and 30 0.300 0.440275.5
30 and 31 0.300293.5 0.510
31 and 32 0.300 0.991311.5
32 and 33 0.300329.5 1.194

347.5 33 and 34 0.300 0.755

J is the grid index along axial direction.

Figure 4. Velocity vectors on a horizontal mid-plane for Re=106.
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Figure 5. Static pressure distribution over the horizontal mid-plane for Re=106.

Figure 6 depicts the behavior of the secondary flow at six different cross-stream planes
located at u=11°, 65°, 83°, 155°, 191°, and 263°. Several factors influence the development of
the secondary flow. The secondary flow exhibits strong inward motion close to the top and the
bottom wall region together with double counter rotating vortices near the core region. The
strong inward flow near the wall induces boundary layer suction effects similar to that in the
conventional spiral. The strength of the secondary flow varies in the circumferential direction.
At the beginning (u=11°) of the plate spiral (Figure 6(a)), the double vortices are very weak.
However, at u=65° and 83° (see Figure 6(b) and (c)), these vortices are more prominent. After
a 155° turn (Figure 6(d)) the secondary flow continues to persist. However, in this case, the
double vortices are somewhat weaker. After a 263° turn (Figure 6(f)), the double vortices
disappear due to the acceleration of flow in the radial direction. In all the sections, flow is
parallel in the distributor region.

Figure 7 shows the static pressure contours at four different cross-sections located at
u=11°, 83°, 191°, and 263°. The static pressure decreases from the outside wall of the casing
towards the distributor outlet. It can be seen from these figures that a low-pressure zone is
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Figure 6. Secondary flow at different cross-sections for Re=106: (a) u=11°, (b) u=65°, (c) u=83°,
(d) u=155°, (e) u=191°, (f) u=263°.

created near the stay vane inlet. This induces circulatory motion. It can also be seen that
throughout the distributor, the static pressure is constant and equal to the static pressure at the
exit of the distributor.

The total pressure contours on the same cross-stream planes are shown in Figure 8. Total
pressure is maximal at the center while it is minimal near the wall. This distribution agrees well
with the observation of Kurokawa and Nagahara [17] in a conventional spiral casing.

3.2. Prediction of pertinent performance parameters

Figure 9 explains some of the important zones on a cross-stream plane. Distribution of various
flow parameters in these zones characterizes the performance of a spiral casing.

The radial distribution of flow parameters for four different cross-sectional planes located at
u=11°, 83°, 191°, and 263° along HH (Figure 9) is shown in Figure 10. The static pressure,
p, decreases towards the inner radius and becomes equal to the ambient pressure near the stay
vane inlet (r/rsv). Within the distributor, also, the static pressure remains constant. The total
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Figure 7. Static pressure contour at different cross-sections for Re=106: (a) u=11°, (b) u=83°,
(c) u=191°, (d) u=263°.

pressure, pt, at first increases from the outside wall to the inner radius and then keeps
decreasing up to the distributor exit. The radial velocity, 6r, is directed towards the outer wall
except near the stay vane (r/rsv=1) zone. Here, it changes direction and increases rapidly.
However, within the distributor zone it remains almost constant. It can be seen that a weak
inward radial velocity is induced for u]191° near the outer radius. The axial velocity, 6, is
zero along HH on all the cross-stream planes. The tangential velocity, 6u, increases from the
outside wall towards the center core region and then keeps decreasing up to the distributor
exit. Within the distributor, the tangential velocity keeps on increasing along the circumferen-
tial direction, while the radial velocity decreases slowly.

The axial distribution of the flow parameters along VV (refer to Figure 9) is shown in Figure
11. The parametric study has been carried out for four different cross-sectional planes located
at u=11°, 63°, 191°, and 263°. A low total pressure zone near the wall and a high total
pressure zone at the center are seen in all the sections. The distribution pattern of tangential
velocity is commensurate with the distribution pattern of total pressure. Both total pressure
and tangential velocity decrease in the circumferential direction. The radial velocity distribu-
tion at u=11° (Figure 11(a)) also reveals the existence of very weak outward flow at the center
and relatively stronger inward flow near the wall. Both the inward and outward radial flows
are much stronger at u=83° (Figure 11(b)). However, at u]191° (Figure 11(c) and (d)), the
outward flow is quite weak whereas the inward flow becomes much stronger.
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Figure 8. Total pressure contour at different cross-sections for Re=106: (a) u=11°, (b) u=83°,
(c) u=191°, (d) u=263°.

The axial distribution of flow parameters along SS (refer to Figure 9) is shown in Figure 12.
The study has been focused on for four different cross-sectional planes located at u=11°, 83°,
191°, and 263°. A low total pressure zone near the wall and a high total pressure zone around
the mid-height is seen in all the sections. The static pressure and axial velocity along SS are
almost zero. The peripheral velocity, 6u, decreases in the range 11°5u583°. However, the
same is accelerated after u\83°. The radial component of velocity increases in the range
11°5u583°. However, the same is decelerated after u\83°. The total pressure does not
change in the circumferential direction.

The axial distribution of flow characteristics at the exit of the guide vane channel (along GG
in Figure 9) for four different angles (u=11°, 83°, 191°, and 263°) is shown in Figure 13. The
radial velocity reduces while the tangential velocity increases in the circumferential direction.
At the exit of the guide vanes, the static pressure is equal to the local ambient pressure. The
total pressure does not change in the circumferential direction. The axial velocity is almost zero
in all the sections, which signifies that the flow is nearly two-dimensional in the distributor
region.
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Figure 9. Important zones on the cross-stream plane.

Figure 14 depicts distribution of the mean flow parameters over VV along the circumfer-
ential direction. Average total pressure, pt, decreases in the main flow direction. Average
static pressure, p̄, remains constant along the circumferential direction. Average tangential
velocity, 6u, decreases in the circumferential direction. Average radial velocity, 6r increases
in the same direction except for the zone near the inlet of the spiral.

In order to examine the variation of mean flow parameters along the circumferential
direction, the averaged values of pressure and velocity over the GG section are plotted as a
function of angular position in Figure 15. The tangential velocity increases slightly in the
circumferential direction. As a result, the total pressure also increases in the same direction.
The static pressure is equal to the local ambient pressure and axial velocity is found to be
zero.
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Figure 10. Radial distribution of flow parameters along HH at (a) u=11°, (b) u=83°, (c) u=263°,
(d) u=191° for Re=106.
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Figure 10 (Continued)
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Figure 11. Axial distribution of flow parameters along VV at (a) u=11°, (b) u=83°, (c) u=263°,
(d) u=191° for Re=106.
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Figure 11 (Continued)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 113–144



P. K. MAJI AND G. BISWAS138

Figure 12. Axial distribution of flow parameters along SS at (a) u=11°, (b) u=83°, (c) u=191°,
(d) u=263° for Re=106.
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Figure 12 (Continued)
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Figure 13. Axial distribution of flow parameters along GG at (a) u=11°, (b) u=83°, (c) u=191°,
(d) u=263° for Re=106.
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Figure 13 (Continued)
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Figure 14. Average flow characteristics on the VV-section as a function of u.

Figure 15. Average flow characteristics on the GG-section as a function of u.
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4. CONCLUSIONS

The optimum performance of a spiral casing is an increasingly important concern of tur-
bine manufacturers. The plate-spirals are being considered by the turbine manufacturers for
the simplicity of the manufacturing process. However, the performance of the plate-spirals
is not known. The performances of such spiral casings have to be evaluated and the
pertinent parameters should be optimized. The need for a computational fluid dynamics
tool for such optimization has been felt over the past decade. The present investigation
explains the utility of such a computational tool. Three-dimensional flow and pressure
distribution in a novel spiral casing have been obtained using a SUPG technique. The
results thus obtained show a plausible physical situation. The development of a useful
model for such a complex geometry may be attributed to mathematical accuracy of the
SUPG technique. Earlier, the method was successfully deployed by the authors [16] for
analyzing flow through a conventional spiral casing. The present investigation is an exten-
sion of the earlier study. As such, the contribution of this investigation is in the effective
utilization of an elegant mathematical concept. The results reveal a plausible three-
dimensional turbulent flow in an extremely complex geometrical configuration of practical
interest. The task that has to be taken up in future is the accomplishment of the model
validation through comparison with the experimental results.
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